3,4-Methylenedioxymethamphetamine produces glycogenolysis and increases the extracellular concentration of glucose in the rat brain.

نویسندگان

  • Altaf S Darvesh
  • Mahalakshmi Shankaran
  • Gary A Gudelsky
چکیده

Oxidative and/or bioenergetic stress is thought to contribute to the mechanism of neurotoxicity of amphetamine derivatives, e.g., 3,4-methylenedioxymethamphetamine (MDMA). In the present study, the effect of MDMA on brain energy regulation was investigated by examining the effect of MDMA on brain glycogen and glucose. A single injection of MDMA (10-40 mg/kg, s.c.) produced a dose-dependent decrease (40%) in brain glycogen, which persisted for at least 1 h. MDMA (10 and 40 mg/kg, s.c.) also produced a significant and sustained increase in the extracellular concentration of glucose in the striatum. Subjecting rats to a cool ambient temperature of 17 degrees C significantly attenuated MDMA-induced hyperthermia and glycogenolysis. MDMA-induced glycogenolysis also was prevented by treatment of rats with the 5-hydroxytryptamine(2) (5-HT(2)) antagonists 6-methyl-1-(1-methylethyl)-ergoline-8 beta-carboxylic acid 2-hydroxy-1 methylprophyl ester maleate (LY-53,857; 3 mg/kg i.p.), desipramine (10 mg/kg i.p.), and iprindole (10 mg/kg i.p.). LY-53,857 also attenuated the MDMA-induced increase in the extracellular concentration of glucose as well as MDMA-induced hyperthermia. Amphetamine analogs (e.g., methamphetamine and parachloroamphetamine) that produce hyperthermia also produced glycogenolysis, whereas fenfluramine, which does not produce hyperthermia, did not alter brain glycogen content. These results support the conclusion that MDMA induces glycogenolysis and that the process involves 5-HT(2) receptor activation. These results are supportive of the view that MDMA promotes energy dysregulation and that hyperthermia may play an important role in MDMA-induced alterations in cellular energetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pentoxifylline Protects the Rat Liver Against Fibrosis and Apoptosis Induced by Acute Administration of 3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy)

Objective(s): 3,4-Methylenedioxymethamphetamine (MDMA) is one of the most popular drugs of abuse in the world with hallucinogenic properties that has been shown to induce apoptosis in  liver cells. The present study aimed to investigate the effects of pentoxifylline (PTX) on liver damage induced by acute administration of MDMA in Wistar rat. Materials and Methods: Animals were administered wit...

متن کامل

Effect of 3,4-Methylenedioxymethamphetamine on Liver CYP2C19 Enzyme Activity in Isolated Perfused Rat Liver Using Omeprazole Probe

  Background and purpose: This study aimed at investigating the effects of 3,4-Methyl​enedioxy​methamphetamine (MDMA) on liver cytochrome 2C19 enzyme activity, which is a major liver enzyme in the metabolism of a wide range of drugs, using omeprazole as a probe of the CYP2C19 activity in isolated perfused rat liver. Materials and methods: This experimental study was done in 20 male Sprague–Da...

متن کامل

Effect of 3,4-methylenedioxymethamphetamine (MDMA) on hippocampal dopamine and serotonin.

The 3,4-methylenedioxymethamphetamine (MDMA)-induced increase in the extracellular concentration of dopamine and the long-term depletion of 5-HT were studied in the hippocampus of the rat brain. MDMA produced a dose-dependent increase in the extracellular concentration of dopamine in the hippocampus, as well as in the striatum. The MDMA-induced increase in the extracellular concentration of dop...

متن کامل

Actions of 3,4-methylenedioxymethamphetamine (MDMA) on cerebral dopaminergic, serotonergic and cholinergic neurons.

3,4-Methylenedioxymethamphetamine (MDMA) is an amphetamine derivative and a popular drug of abuse that exhibits mild hallucinogenic and rewarding properties and engenders feelings of connectedness and openness. The unique psychopharmacological profile of this drug of abuse most likely is derived from the property of MDMA to promote the release of dopamine and serotonin (5-HT) in multiple brain ...

متن کامل

L-tyrosine contributes to (+)-3,4-methylenedioxymethamphetamine-induced serotonin depletions.

The specific mechanisms underlying (+)-3,4-methylenedioxymethamphetamine (MDMA)-induced damage to 5-HT terminals are unknown. Despite the hypothesized role for dopamine (DA) and DA-derived free radicals in mediating this damage, it remains unclear why MDMA produces long-term depletions of 5-HT in brain regions that are sparsely innervated by DA neurons. We hypothesized that the precursor to DA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 301 1  شماره 

صفحات  -

تاریخ انتشار 2002